BelNET logoНаучно-образовательный портал ядерных знаний Республики Беларусь BelNET (Belarusian Nuclear Education and Training)

В ЛНФ ОИЯИ разработан позиционно-чувствительный монитор медленных нейтронов

Ученые Лаборатории нейтронной физики Объединенного института ядерных исследований разработали детектор тепловых и холодных нейтронов на основе твердотельного конвертера. Новое устройство будет обладать повышенной радиационной стойкостью по сравнению с аналогами, и срок его службы в нейтронном пучке будет дольше. Оно позволит контролировать флуктуацию плотности потока падающего пучка, и его легко масштабировать. Прототип детектора уже изготовлен в Лаборатории, в дальнейшем устройство предлагается применить на одном из спектрометров реактора ИБР-2. Изобретение может быть использовано для исследований в области конденсированных сред, измерения профиля пучка при бор-захватной терапии, контроля перемещения делящихся веществ и др.

Изобретение представляет собой двухкоординатный позиционно-чувствительный детектор тепловых и холодных нейтронов на основе плоскопараллельной резистивной камеры (ППРК), в котором для определения координаты реализован метод линии задержки, что обеспечивает долговечность работы такого детектора в нейтронном пучке.

«Детектор прост в изготовлении и эксплуатации и обладает высокой степенью масштабируемости, что позволит покрыть большие телесные углы в будущем, а также даст возможность работать с холодными нейтронами, так как работает он в проточном режиме», — рассказала соавтор изобретения, младший научный сотрудник Сектора нового источника и комплекса замедлителей ЛНФ ОИЯИ Мария Петрова.

Детекторы на основе плоскопараллельных резистивных камер, появившиеся в 80-ых годах ХХ века, нашли широкое применение в физике высоких энергий благодаря своим рабочим характеристикам и возможности создания детекторов большой площади (\(> 100\) м\(^{2}\)). Существенным отличием данного изобретения от других ППРК – позиционно-чувствительных детекторов тепловых нейтронов – является нанесение слоя карбида бора на стекло, которое дает возможность индуцировать сигнал сквозь него на считывающие стрипы.

Детектор работает на основе твердотельного конвертера – карбида бора \(^{10}\text{B}_{4}\text{C}\). Конвертер – это ядро с большим сечением поглощения нейтрона интересующей энергии, которое после захвата распадается на две заряженные частицы, доступные к непосредственной регистрации. Ядрами, которые наиболее часто используются для регистрации тепловых и холодных нейтронов, являются \(^{3}\text{He}\) (\(\sigma_{a}=5328\) б), \(^{10}\text{B}\) (\(\sigma_{a}=3837\) б), \(^{6}\text{Li}\) (\(\sigma_{a}=940\) б). В силу того, что \(^{3}\text{He}\) обладает наибольшим сечением поглощения тепловых нейтронов среди перечисленных изотопов, он является наиболее популярным конвертером для создания позиционно-чувствительных детекторов нейтронографических станций. Дефицит \(^{3}\text{He}\) и трудности, связанные с регистрацией холодных (\(>10\) Å) нейтронов детекторами под большим давлением, стимулируют развитие детекторных технологий на основе альтернативных конвертеров. Следующий по величине сечения поглощения тепловых нейтронов является \(^{10}\text{B}\). Карбид бора является широко распространенным и экономически доступным.

В настоящее время на станциях нейтронного рассеяния наиболее распространены многопроволочные позиционно-чувствительные детекторы с газовым конвертером на основе \(^{3}\text{He}\) и сцинтилляционные на основе порошка \(^{6}\text{Li}\). В силу особенностей работы таких детекторов длительность формируемого сигнала составляет от единиц до нескольких десятков микросекунд, что ограничивает их временное разрешение и загрузочную способность. Планируемый к реализации в 2036–2037 годах исследовательский реактор ОИЯИ будет обладать плотностями потоков нейтронов, превосходящими существующий источник ИБР-2 более, чем на порядок, что требует введения в действие более совершенных детекторов нейтронов.

«Недостатки работы детекторных систем на основе гелий-3 и литий-6, а также необходимость в снижении стоимости единицы рабочей площади при сохранении конкурентного пространственного и временного разрешения вызывают необходимость в поиске новых решений. Созданный прототип обладает равномерным полем, из-за чего длительность сигнала составляет 30 наносекунд, а определение координаты по методу линии задержки обеспечивает необходимость всего пяти каналов регистрации», — поясняет Мария Петрова.